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Abstract

Due to the electronic structure of the 4f-shell, rare-earth ions (REIs) have intrinsi-
cally long optical lifetimes and coherence times, which makes them good materials
as gain media in lasers, and now, as optically addressable qubits in quantum tech-
nologies. Using molecular complexes as host material for REIs provides a new
possibility to chemically engineer a favorable environment by tailoring the sur-
rounding ligand fields of the REIs. This can tune the frequencies and branching
ratios of transitions that are favorable for quantum technologieswhilst still main-
taining good coherence times. Furthermore, multiple ions can be embedded into
one molecule, enabling controllable coupling between the ions, which is essential for
multi-qubit operation.

In this thesis, an Eu3+-embedded molecular complex in the form of crystalline
platelets is integrated into a fiber-based Fabry-Pérot microcavity in order to demon-
strate cavity-enhanced spectroscopy. Using a recrystallization method, the crys-
talline platelets with thicknesses as low as 2 µm are grown on a planar cavity
mirror. A number of crystals feature a RMS surface roughness of 0.4 nm on an
area of 5 µm × 5 µm, corresponding to scattering loss of 100 ppm. Room tempera-
ture spectroscopy proves that the branching ratios, linewidths and optical lifetime
are preserved during the recrystallization process.

With a laser-machined optical fiber, with controllable movement in the x-, y-, and
z-dimensions through the use of piezos, the cavity can be scanned laterally in order
to locate the crystals. A high-finesse cavity can be formed on most of the crystals,
with a maximum finesse of 4,000. Cavity-enhanced fluorescence spectroscopy can
be performed using an off-resonant excitation scheme. In the so-called bad emitter
regime, where the effective Q-factor is determined via the Q-factor of the emitter, a
Purcell factor of 0.09 is expected. The optical lifetime in the cavity is measured by
off-resonant pulsed excitation, and is then compared with the free-space lifetime.
At the present time, no conclusion can be made on the lifetime shortening in the
cavity, because the lifetime difference lies within the statistic deviation. However,
some individual cavity lifetimes show a reduction of about 10% compared to the
free-space lifetime of 540 µs.
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Chapter 1

Introduction

Quantum is everywhere. However, the quantum effects can mostly not be observed
because the coherence, the soul of quantum, is lost due to various disturbances.
That is why we are living in a so-called classical world.

Since the introduction of quantum theory, a lot of work has been done trying
to observe quantum effects of individual quantum systems, which requires strong
and coherent interaction with the system. The invention of the laser[1] provides a
very useful tool for such a purpose. There are two approaches that can be taken.
One is to reduce the interaction time such that no coherence can be lost during
the interaction. Modern ultrafast laser techniques, based on high-order harmonic
generation, can produce laser pulses with a duration in the range of attoseconds (as,
10-18 s), which can be used to capture fully coherent dynamics with high temporal
resolution.[2]

The other direction is to preserve the coherence of the quantum system, for which a
large number of techniques have been developed, including integration in cryogenic
environment[3], ion trapping and radio-frequency driving[4]. Many different material
platforms have been investigated for longer coherence time.

A coherent quantum system can be utilized in quantum information processing
(QIP). Using quantum states as the computation units to store and process infor-
mation, a quantum computer promise to be much faster and more efficient than a
classical computer for particular tasks. In addition to long coherence times, a qubit
is also required to be easy to address and scale up. With respect to recent research,
promising candidates are trapped ions,[5, 6] Rydberg atoms,[7, 8], color centers in
diamond,[9, 10] rare-earth ions in host materials[11, 12] and quantum dots.[13, 14]

Due to the electronic structure, the degeneracy in the 4f-shell of the REIs can be
completely lifted, giving rise to abundant transitions with long coherence times
for quantum technologies. In addition, the nuclear spin transitions resulting from
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CHAPTER 1. INTRODUCTION

the hyperfine interaction have even longer coherence times. An optical coherence
time of 0.8 ms was measured in 171Yb3+:Y2SiO5,[4] while the record nuclear spin
coherence lifetime is 6 hours, measured in 151Eu3+:Y2SiO5.[15] Recently, research has
been focused on using organic molecular complexes as host materials[16–19], which
provide a possibility to design the spectroscopic properties of the qubits and the
interactions between them by chemically engineering the surrounding molecular
environment of the REI. Recent research using diluted Eu3+-embedded molecular
complexes has proved an optical coherence time of 68 µs at 1.42 K.[17]

Like many other qubit candidates, the REIs also suffer from weak transition in-
tensitiy. Therefore, a high coupling efficiency between the light and the REIs is
required. A number of confining techniques have been developed, for example op-
tical resonators[20–22] and photonic crystal structures.[23, 24]

A Fabry-Pérot microcavity[22, 25], consisting of mirrors with high reflectivities, can
achieve high finesse and spatial resolution, which is an ideal tool to investigate
quantum emitters in the form of crystals and particles. Based on such a micro-
cavity, a scanning cavity microscope has been made,[26] which has been further
utilized to measure Raman spectroscopy[27] and investigate the optical properties
of diamond membranes.[28] In addition, such a platform is also capable for cryogenic
operation.[29]

In this thesis, the non-diluted molecular complex described in Ref. [17] is inte-
grated in the form of crystalline platelets into a fiber-based Fabry-Pérot microcavity
by recrystallization while preserving the optical properties. Cavity operation and
cavity-enhanced spectroscopy are demonstrated at room temperature.

The structure of this thesis is as follows. First, the theoretical background is dis-
cussed in chapter 2. Then, in chapter 3, the microcavity setup and the sample
preparation method are introduced, followed by the measurement schemes. After
this, the measurement results are presented and discussed. Finally, the work is
summarized, followed by an outlook for future improvements.
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Chapter 2

Theoretical Background

In this chapter, we introduce the theoretical background relevant to our research.
We first describe the idea of quantum computing and the demands on qubits. Then
we show the energy level structure of REIs in general and why the molecular com-
plexes as host materials are special. From the optical side, we introduce the fiber-
based Fabry-Pérot microcavity that we use to confine the light. Finally, combining
emitters and an optical cavity, we introduce a quantum model for light-matter
interaction and explain the Purcell effect.

2.1 Rare-earth Ion and Quantum Comput-
ing

Quantum computing is a new concept of information processing, which utilize quan-
tum states to perform computation. A number of quantum systems and the corre-
sponding schemes to address them have been investigated. As one of the candidates,
REIs feature long optical and nuclear spin coherence times. Recently developed
molecular complexes as the host materials make it possible to engineer the geome-
try between the quantum emitters and further extend the coherence times.

2.1.1 Quantum Information Processing
The modern digital computers are based on electronic devices. The information
is processed as voltages in transistors. The voltage can change the property of
the semiconductors, making them conducting or insulating. The computing speed
depends on the speed of the electronic switch, which is limited by the speed of
charge transfer in the semiconductors. This limits the clock rate to a maximum of
a few GHz.

3



CHAPTER 2. THEORETICAL BACKGROUND

A quantum computer makes use of quantum states to perform computation. Rather
than transistors, the computation units in a quantum computer are quantum sys-
tems called qubits. The simplest model for a qubit is a two-level system. The
information is stored in the quantum states and manipulated by light, i.e. photons.
A logic gate operation can be performed with two interacting qubits. For example,
an excitation in one qubit will shift the transition of another qubit nearby, and thus
activate or deactivate the transition. It is worth mentioning that in general, the
qubit is not limited to atomic systems. A photon can also be a qubit, a so-called
flying qubit.

A classical bit is a binary system with two states: on (1) and off (0). Although
a qubit is still a two-level system, via coherent superposition, a real number can
be stored in a qubit. Making use of the phase, a qubit can also process a complex
number. From binary to complex, a quantum computer has much higher capacity
compared to electronic computers. Not limited by the speed of the electronic switch,
a quantum computer has the potential to be much faster and more efficient than
electronic computers for may tasks.

2.1.2 Qubit Candidates
To benefit from the advantages of quantum computing, a number of criteria must
be met. For fidelity, the qubits have to remain coherent until the computation is
completed. But naturally, a quantum system is always coupled with the environ-
ment and thus tends to lose the coherence which is called decoherence. The time
a quantum system can stay coherent is called the coherence time. A qubit has to
be easily identified and distinguished from other qubits in order to write, process
and read out the information precisely. Due to the weak dipole moments of the
transitions, a high coupling efficiency is required, in order to address and read out
the qubits precisely. Some confining techniques will be discussed in Sec. 2.2.

To find good candidates for qubits, a number of different material platforms have
been recently explored. Examples are trapped ions,[5, 6] Ryderburg atoms,[7, 8],
color centers in diamond,[9, 10] rare-earth ions in host materials[11, 12] and quantum
dots.[13, 14]

The most straightforward way to create a qubit is to use a single atom or ion.
However, as such atoms tend to be free moving, trapping is needed to extend the
interaction time with the light. Alternatively, solid-state-based qubits are not free
to move and thus can be easily located. However, they face a significant amount of
ambient noise from the host materials. A large amount of work has been done to
decouple the qubits from the environment, for example by cooling down the system,
engineering the host materials and using dynamic decoupling sequences.
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Figure 2.1: Energy level structure of an 151Eu3+ ion embedded in a host
material. The isospin I = 5/2 gives rise to a zero-field triplet hyperfine structure.

2.1.3 Rare-earth Ions as Qubits
The rare-earth elements are composed of the group of lanthanides together with
scandium, yttrium and lanthanum. They feature a special electronic structure
which has partially filled 4f (for lanthanides), 4d (for yttrium) or 3d (for scandium)
shells are located within the completely filled 5s and 5p shells, and thus are shielded
from external electric fields. Therefore, the transitions within those shielded shells
have long lifetime and coherence time.

REIs have multiple line-splitting mechanisms, including electronic repulsion, spin-
orbit coupling and the hyperfine interaction. A large number of transitions are
therefore available for quantum computing.

Energy Level Structure of Eu3+

Here we take 151Eu3+, which is investigated in this work, as an example to explain
the energy level structure of REIs in host materials. The electron configuration of
Eu3+ can be written as [Xe]4f6. To understand the energy level structure of Eu3+,
we will show how the degeneracy of the 4f6-configuration is lifted step by step as
shown in Fig. 2.1.

The 4f shell has 7 orbitals with degenerate energy for a single electron. However,
when filled with electrons, the degeneracy is first lifted due to Coulomb repulsion

5



CHAPTER 2. THEORETICAL BACKGROUND

L 0 1 2 3 4 5 6 7 8 · · ·
Symbol S P D F G H I K L · · ·

Table 2.1: Term symbols for different total orbital quantum numbers. The
first four symbols are derived from the characteristics of the lines corresponding to
s, p, d, and f orbitals: sharp, principal, diffuse, and fundamental; the rest are named
in alphabetical order from G onwards, omitting J, S and P.

Figure 2.2: Energy level diagram of a single Eu3+ ion. The figure is adapted
from Ref. [17].

between the electrons. Therefore, instead of the orbital quantum number l, the new
good quantum numbers are the total electronic spin quantum number S and the
total orbital quantum number L. The new eigenstates are called terms and denoted
as 2S+1L. Here L is represented by a symbol given in Tab. 2.1. The transitions
between different terms are typically on the order of 100 THz.

Further, we have spin-orbit coupling, also called Russell–Saunders coupling[30] or
LS-coupling, because quantum numbers L and S are coupled due to the interaction
between the orbital angular momentum and the spin angular momentum. The
energy is determined by the total angular momentum quantum number J , ranging
from |L− S| to L + S. Based on the term symbols, the levels are 2S+1LJ . With
the spin-orbit coupling, a term is splitted into several levels and the transitions
between them are typically on the order of 10 THz. In particular, the energy levels
of a single Eu3+ ion are shown in Fig. 2.2.

6



2.1. RARE-EARTH ION AND QUANTUM COMPUTING

So far, all the discussion is about a single ion. When an ion is doped into a crystal
with a certain lattice structure or embedded into a molecule, the crystal field or
the ligand field will affect the energy level structure of the ion, which are shifted
and splits the energy levels into sublevels, lifting the degeneracy on the quantum
number J . In this case, the quantum number is mJ , representing the projection
of the total angular momentum, with the range from −J to J . The sublevels are
denoted as 2S+1LJ(n), whereas n = 0 corresponds to the lowest energy level of the
multiplet. The energy splitting caused by the crystal field or the ligand field is
typically on the order of 1 THz and varies for different host materials. For crystal
fields or ligand fields with the lowest symmetry, the 2J+1 degeneracy is completely
lifted.

In general, according to Laporte’s selection rules[31], none of the intraconfigurational
4f-4f electric dipole transitions are allowed. However, when embedded into suitable
host materials, those transitions become partially allowed due to crystal field effects.
Therefore, they are often called induced electric dipole transitions. The selection
rules of such transitions within the 4f-configuration are:[32]

|∆S| = 0,

|∆L| ≤ 6,

|∆J | ≤ 6 and |∆J | = 2, 4, 6 if J = 0 or J ′ = 0.

(2.1)

The selection rules for ∆S and ∆L are not strictly valid, because S and L are
not good quantum numbers any more. Rather the selection rule on J is more
rigorous, but it can still relax by J-mixing[33]. Therefore, the 5D0 → 7FJ (J=0, 3,
5) transitions have relatively low intensities.

With the interaction between the electronic and nuclear spins, the degeneracy on
the nuclear isospin I is lifted. The magnetic dipole coupling, called IJ-coupling
analogous to LS-coupling, together with the electric quadrupole coupling, gives
rise to the hyperfine structure. For the two stable isotopes 151Eu and 153Eu, both
with isospin I = 5/2, the three hyperfine levels have quantum numbers mI =
±1/2, ±3/2, ±5/2, representing the projection of the nuclear isospin. The typical
energy scale of such hyperfine splittings is on the order of 10 MHz, depending on
the isotope. The hyperfine transitions are strictly forbidden, because no electric
dipole is involved. Without disturbance from other nuclear spins, the lifetimes of
the hyperfine states are much longer than the optical lifetimes.

The degeneracy between positive and negative mI can be further lifted by an ex-
ternal magnetic field, which is the so-called Zeeman effect. The Landé g-factor of
151Eu3+ is on the order of 10 MHz/T.[34, 35] An example of calculated Zeeman split-
ting of Eu3+:Y2SiO5 (Eu3+:YSO) is shown in Fig. 2.3. The Zeeman effect provides
freedom to tune the hyperfine levels. The record nuclear spin coherence time of 6
hours is measured at a zero first order Zeeman (ZEFOZ) point in Eu3+:YSO. [15]

7
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Figure 2.3: Calculated Zeeman splitting of Eu3+:YSO. The figure is adapted
from Ref. [34].

Host Materials

As discussed before, the host materials create a crystal field or ligand field to the
REIs, which will lift the degeneracy on J . Most importantly, the host materials will
relax the selection rules and activate some transitions which are usually forbidden.

Solid-state host materials have been extensively investigated, including Eu3+:YSO,
Eu3+:Y2O3 and EuP5O14. These materials can be synthesised as bulk crystals with
good optical properties, for example low scattering. In addition, they can be made
into nanoparticles while maintaining the good optical properties in order to reduce
the density of emitters in a single particle to address single emitters.

However, the provided environment is not quiet enough to fully exploit REI prop-
erties. In addition, the distance between emitters in the solid-state materials is not
controllable, since doping is a stochastic process.

Some recently studied host materials are organic molecular complexes. Rather than
the solid-state host materials, each ion in the molecular complexes has exactly the
same environment because the molecules are identical. The structure of a molecular
complex can be easily engineered. By changing the symmetry of the molecule, the
transition dipole moment can be modified, and thus the transition amplitudes. Two
or more REIs can also be embedded into one molecule with distinct distance and
geometry to control the interaction between the ions and even to achieve multi-qubit
coupling.

8



2.2. FABRY-PÉROT MICROCAVITY

In this research, we prove that organic molecular complex recently reported in
Ref.[17] can also form thin and smooth crystalline platelets, which are favourable
for cavity integration. It is shown that our method of preparation preserves the
optical properties during the crystallization process.

2.2 Fabry-Pérot Microcavity
In order to perform qubit manipulation, light is used to interact with an individual
qubit, in the case of REIs, a single ion. To increase the excitation and detection
efficiency, the interaction between light and matter has to be enhanced. One of the
solutions is to confine the photons to a small volume close to the emitters for as
long as possible. Various techniques for this purpose have been developed,[36] for
example optical resonators,[20–22] ion traps[37, 38] and photonic crystals.[23, 24]

In this research, a high-finesse Fabry-Pérot microcavity is used to confine the pho-
tons, with a potential to achieve sub-λ3 volume. Additional to quantum comput-
ing, such a microcavity can also be used to track and trap nanoparticles,[39, 40]

sense the refractive index of the cavity medium,[41] and investigate cavity quantum
electrodynamics.[42]

2.2.1 Structure
A Fabry-Pérot cavity (FPC), also called a Fabry-Pérot interferometer or etalon,
is an optical cavity composed of two parallel mirrors used to trap the photons
inside. Such a cavity was first developed by Charles Fabry and Alfred Perot1 in
1899.[43, 44] In addition to optics, the FPC is also widely used in other fields, for
example telecommunication and astronomy, to measure, filter and stabilize optical
frequencies.

As shown in Fig. 2.4, the simplest FPC is composed of two planar mirrors separated
by a distance l, with reflection coefficients r1 and r2, respectively. Without loss of
generality, the reflection coefficients can be assumed to be real and positive, as the
reflection phases are constant phase shifts added to each round trip. Em represents
the electric field amplitude of the light in the cavity after the mth round trip. The
total amplitude in the cavity can then be calculated:

Ec =
∞∑

m=0

Em =
∞∑

m=0

(
r1r2e

−iφ
)m

E0, (2.2)

where φ = 4πnlν
c

is the propagation phase, with n the refractive index of the cavity
medium, ν the frequency of the light and c the speed of light in vacuum. As a

1His last name is spelt Perot but he used Pérot in publications.
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Figure 2.4: Sketch of a Fabry-Pérot cavity.

geometric series, Eq. (2.2) can be easily simplified as:

Ec =
E0

1− r1r2e−iφ
. (2.3)

To describe how much power is trapped in the cavity, the cavity enhancement factor
Ac is defined as the power ratio between the trapped and input light:

Ac ≡
Pc

Pin

=
|Ec|2

|Ein|2
=

|E0|2

|Ein|2
1

|1− r1r2e−iφ|2
=

T1
1 +R2 − 2R cosφ

, (2.4)

where T1 is the transmittance, or power transmission coefficient of the left mirror.
For simplicity, in the last step, the mean reflectance, or power reflection coefficient,
R = r1r2 is used. In practice, the cavity transmittance:

Tc = T2Ac =
T1T2

1 +R2 − 2R cosφ
(2.5)

is used, where T2 is the transmittance of the right mirror.

2.2.2 Cavity Stability
For a stable cavity, a beam should converge after infinite round trips. Mathemat-
ically, a ray transfer matrix, or ABCD matrix, can be used to describe a optical

10
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Figure 2.5: Stability of a Fabry-Pérot cavity composed of two concave
mirrors. a: The sketch of such a cavity. b: Stability diagram of such a two-
mirror cavity. A stable cavity can be formed if the parameters (g1, g2) fall into the
blue region.

system. Consider a cavity shown in Fig. 2.5a composed of two concave mirrors
separated by a distance l, with radii of curvature R1 and R2 (negative for convex
mirrors), respectively. The ray transfer matrix for a round trip in such a cavity is

T =

(
1 0

− 2
R1

1

)(
1 l
0 0

)(
1 0

− 2
R2

1

)(
1 l
0 0

)
=

(
1 l

− 2
R1

1− 2l
R1

)(
1 l

− 2
R2

1− 2l
R2

)
=

(
1− l

R2
2l − 2l2

R2

− 2
R1

− 2
R2

+ 4l
R1R2

− 2l
R2

+
(
1− 2l

R1

)(
1− 2l

R2

)) .
(2.6)

The eigenvalues of a matrix A have the following properties:

tr(A) =
∑
i

λi (2.7)

and
det(A) =

∏
i

λi, (2.8)

with λi being the ith eigenvalue of A.

In the case of the ray transfer matrix in Eq. (2.6), we have

λ1 + λ2 = tr(T) = 4

(
1− l

R1

)(
1− l

R2

)
− 2 (2.9)

11
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and
λ1λ2 = det(T) = 1. (2.10)

In order to have a stable cavity, it is required that

max{|λ1|, |λ2|} ≤ 1. (2.11)

This is only true when:
λ1 = eiϕ, λ2 = e−iϕ. (2.12)

Following this
λ1 + λ2 = 2 cosϕ, (2.13)

therefore
−2 ≤ 4

(
1− l

R1

)(
1− l

R2

)
− 2 ≤ 2. (2.14)

We obtain that the stability condition of such a cavity is

0 ≤
(
1− l

R1

)(
1− l

R2

)
≤ 1. (2.15)

g1 ≡ 1 − l
R1

and g2 ≡ 1 − l
R2

are called the stability parameters. In the stability
diagram shown in Fig. 2.5b, the region where a stable cavity is formed is colored
blue.

2.2.3 Longitudinal Modes
Qualitatively, the cavity is on resonance when the propagation phase during a round
trip is a multiple of 2π such that:

φ =
4πnlν

c
= 2πq, (2.16)

where q is a positive integer. This is also obvious that when the resonance condition
is fulfilled, the cavity transmittance in Eq. (2.5) reaches the maximum

Tc,max =
T1T2

(1−R)2
. (2.17)

If the cavity length is fixed, then the qth order resonance frequency is given by

νq =
qc

2nl
. (2.18)

Whereas, if the frequency is fixed, then the qth’ order resonance cavity length is
given by

lq =
qc

2nν
. (2.19)

12
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Based on Eq. (2.18), we can define the free spectral range (FSR) as the distance
between two neighbouring resonance frequencies:

∆ν =
c

2nl
, (2.20)

which is also the frequency of a photon bouncing back and forth in the cavity.
Considering the FSR of wavelength, we get another useful expresion:

∆λ =
λ2

2nl
. (2.21)

When Ac decreases to half of the maximum, we have

1 +R2 − 2R cosφ = 2 (1−R)2 . (2.22)

Thus, φ has to fulfill:

cosφ = 1− (1−R)2

2R
. (2.23)

Now consider the qth order resonance cavity with

φq = 2πq. (2.24)

In the case that φ is close to φq, taking the second order Taylor expansion, cosφ
can be written as

cosφ ≈ 1− (φ− φq)
2

2
. (2.25)

Substituting this into Eq. (2.23), we get

φ− φq =
1−R√

R
. (2.26)

Then the full width at half maximum (FWHM) of the resonance is

δφ =
2 (1−R)√

R
. (2.27)

In addition, the FWHMs expressed in terms of the frequency and cavity length can
also be calculated:

δν =
c

4πnl
δφ =

c

2nl
· 1−R

π
√
R
, (2.28)

δl =
c

4πnν
δφ =

c

2nν
· 1−R

π
√
R
. (2.29)

13
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To describe the relative sharpness of the resonance, the finesse F is defined as the
ratio between the FWHM and FSR:

F ≡ ∆φ

δφ
=

∆ν

δν
=

∆l

δl
=

π
√
R

1−R
, (2.30)

where ∆φ and ∆l are the distances between neighbouring resonances expressed in
phase and cavity length, respectively.

With the definition of finesse, Eq. (2.5) can be further simplified to

Tc =
T1T2

(F
π

)2
1 +

(
2F
π

)2
sin2 φ

2

. (2.31)

With this, the cavity resonance spectra are plotted in Fig. 2.6 with respect to the
phase for different finesses. A higher finesse means sharper peaks in the resonance
spectrum. To measure the finesse of a cavity, the easiest way is to measure the
resonance spectrum, by varying either the frequency or the cavity length.

Under the approximation sin2 φ
2
≈
(
φ
2

)2, it follows that the cavity resonance has a
Lorentzian line shape. In general, a normalized Lorentzian line shape is

T (x) =
1

π

δ/2

(δ/2)2 + (x− x0)
, (2.32)

where x could be either φ, ν or l, and δ and x0 are the corresponding FWHM and
resonance value, respectively.

2.2.4 Transverse Modes
So far, only the longitudinal modes have been discussed. However, to describe the
mode shape in three dimensions, transverse modes also have to be considered. In a
geometry with cylindrical symmetry, the fundamental mode is a Gaussian mode, in
particular the TEM00 mode, which is a solution of Maxwell equations under paraxial
approximation. Mathematically, for a given wavenumber k and wavelength λ, the
Gaussian mode in free space has an electric field distribution as follows:

E(r, z) = E0
w0

w(z)
exp

(
− r2

w2(z)
− i

kr2

2R(z)
− ikz + arctan

z

z0

)
. (2.33)

z is the coordinate along the optical axis and r is the transversal distance from the
axis. w0 is the smallest beam radius which is called beam waist. Then the Rayleigh
range can be defined as follows:

z0 =
πw2

0

λ
. (2.34)
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Figure 2.6: Cavity resonance spectra for different finesses. The intensity in
the cavity is normalized to the maximum for each spectrum.

w(z) is the beam radius at different longitudinal positions given by

w(z) = w0

√
1 +

(
z

z0

)2

. (2.35)

R(z) is the radius of curvature of the wavefront given by

R(z) = z

(
1 +

(z0
z

)2)
. (2.36)

E0 is the amplitude at the origin (focus). The prefactor w0

w(z)
describes longitudinal

mode profile and the first term of the exponent describes the transverse mode
profile.

The intensity distribution of the Gaussian mode in Eq. (2.33) can then be easily
calculated:

I(r, z) = I0
w2

0

w2(z)
exp

(
− 2r2

w2(z)

)
, (2.37)

where I0 is the intensity at the origin. Such an intensity distribution is shown in
Fig. 2.7.

In the cavity, a standing wave is formed with two counter-propagating Gaussian
beams. By changing the sign of k in Eq. (2.33), the wave propagate in the −z
direction is obtained. Then the intensity distribution of a Gaussian mode in cavity
becomes

Ic(r, z) = 2I0
w2

0

w2(z)
exp

(
− 2r2

w2(z)

)
cos

(
kz +

kr2

2R(z)

)
, (2.38)
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Figure 2.7: Intensity distribution of a Gaussian mode in free space. a and b
are the beam profile in transverse and longitudinal plane, respectively. The dashed
line in b shows the beam radius w(z). The intensity distributions on longitudinal
and transverse axis are shown in c and d, respectively.

which is shown in Fig. 2.8.

Besides the fundamental Gaussian mode, there are also higher-order transverse
modes. They can be decomposed into different sets of eigen-modes, depending on
which coordinate system is used.

Hermite-Gaussian modes are a set of eigen-modes in Cartesian coordinates, com-
posed of Hermite polynomials Hn(x):

El,m(x, y, z) = E0
w0

w(z)
Hl

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)

× exp

(
−x

2 + y2

w2(z)
− i

k (x2 + y2)

2R(z)
− ikz + (l +m+ 1) arctan

z

z0

)
,

(2.39)

where l and m are mode orders referring to x and y direction, respectively. The
shapes of some Hermite-Gaussian modes are shown in Fig. 2.9.

In cylindrical and elliptic coordinates, the transverse modes can be decomposed
into Laguerre-Gaussian modes[46] and Ince-Gaussian modes,[47] respectively.

Unlike electrons, photons, as bosons, tend to occupy the state with the lowest
energy. Therefore, the fundamental mode is usually dominant. However, when the
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Figure 2.8: Intensity distribution of a Gaussian mode in a cavity. The beam
waist z0 is equal to the wavelength λ.

cylindrical symmetry is broken, higher-order modes could have comparable or even
lower energies relative to the fundamental mode. In this case, higher-order modes
can be observed.

By introducing an Au nanoparticle into a scannable microcavity, the point spread
function of each transverse mode can be measured individually.[26] The cavity reso-
nance spectrum and the mode shape of each transverse mode are shown in Fig. 2.10

Without birefringence, the cavity is isotropic to polarization. However, when a
birefringent material is introduced into the cavity, separated polarization modes
start to emerge.

For cavity enhanced spectroscopy, higher order modes and polarization modes are
not favourable, because they lower the coupling into the fundamental mode. To
eliminate these modes, the cavity has to be well aligned to keep cylindrical symme-
try and the polarization of the laser has to be adjusted to match the birefringence
of the cavity.

2.2.5 Losses in the Cavity
The finesse in Eq. (2.30), and thus the resonance spectra in Fig. 2.6, are only for
lossless cavities. For a cavity with round trip loss L, a factor of

√
1− L has to be

multiplied to the mean reflectance R. The finesse then becomes

F =
π
√
R
√
1− L

1−R
√
1− L

. (2.40)
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Figure 2.9: Shapes of Hermite-Gaussian modes in the transverse plane.
The first and second number refers to l and m, respectively. The figure is taken
from Ref. [45].

This relation can be used to calculate the losses introduced by the sample.

The cavity loss could come from interface scattering, media scattering and absorp-
tion.

Scattering at the interface can be described as diffuse reflectance as follows[48]

Rd = R0

(
4πσ

λ

)2

, (2.41)

where R0 is the specular reflectance and σ is the root mean square (RMS) roughness
of the surface.

Media scattering can be classified into either Rayleigh scattering, Mie scattering or
optical scattering depending on the relative size of the particles compared to the
wavelength. In a bulk material, there is no significant media scattering.

The absorption of the sample in the cavity is determined by the spectral prop-
erties. By calculating the absorption from the measured finesse, the absorption
spectroscopy in the cavity features a higher sensitivity.

All kinds of losses in the cavity will decrease the finesse and thus broaden the
resonance peaks.
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Figure 2.10: Cavity transmission signal while tuning the cavity length.
The insets show the shapes of different transverse modes by scanning the cavity
across an Au nanoparticle and evaluating the resonant transmission for each mode.
The figure is taken from Ref. [26].

2.2.6 Mode Dispersion and Hybridization

In general, dispersion means the relation of a mode in the time domain and the
spatial domain. In the case of a cavity, it is the relation between the frequency and
the cavity length of a specific mode. Eq. (2.16) is the dispersion relation of the
longitudinal modes in an empty cavity.

To visualize the mode dispersion, the cavity transmittance in Eq. (2.5) is calculated
for different wavelengths and cavity lengths, as shown in Fig. 2.11. The cavity mode
dispersion can be measured experimentally by scanning the frequency and cavity
length simultaneously.

When a sample is mounted into the cavity, it becomes a hybrid cavity with two
different media, an air gap with thickness la and a dielectric material with thickness
ld. Considering only the air gap, we get the pure air modes, which have the same
dispersion relationship as the modes in an empty cavity. Considering only the
dielectric material, we get the pure dielectric modes, which are independent of la.
In a hybrid cavity, The electric fields in the two media are coupled to each other
and have to fulfill the boundary conditions at the interface. Thus the air modes and
dielectric modes are also coupled to each other, resulting in the hybridized modes.
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Figure 2.11: Cavity mode dispersion of an empty cavity. The finesse is set to
be 10. The dashed lines from left to right show the longitudinal modes calculated
with Eq. (2.16) from the 22th order to the 26th order, respectively.

The resonance condition of a hybrid cavity for a fixed ld is given as follows:[49]

la,q =
λ

2π
arctan

(
− 1

nd

tan

(
2πndld
λ0

))
+
qλ

2
, (2.42)

where nd is the refractive index of the dielectric material and q is the mode order.
Due to the boundary conditions, it is not possible to have a cavity resonant both in
dielectric material and air gap at the same time, so an anti-crossing behavior will
be observed.[50, 51] When the cavity is resonant in the air gap, the mode is called
“air-like”, because such a mode behaves like a pure air mode. When the cavity is
resonant in the dielectric material, the mode is called “dielectric-like”, because such
a mode behaves like a pure dielectric mode. The dispersion of hybridized modes is
shown in Fig. 2.12. A hybridized mode changes periodically between air-like and
dielectric-like due to anti-crossings.

To further understand the mode hybridization, we simulate the mode dispersion
using the matrix method described in Ref. [52]. We use two coated mirrors with
design transmittances of 26% and 3%, called the low reflectivity (LR) mirror and
the high reflectivity (HR) mirror respectively. The thickness of the crystal is set to
be 5 µm and the refractive index of the crystal is set to be 1.5. The parameters are
chosen as such as they are similar to those values we use in the experiment, which
will be discussed in chapter 3.

The results of the simulation are shown in Fig. 2.13a and b, with the crystal lying
on the LR mirror and the HR mirror, respectively. When the crystal lies on the LR
mirror, the dielectric-like modes have lower transmission, and vice versa. This can
be explained by comparing the finesses of the air-cavity and the dielectric-cavity.
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Figure 2.12: Hybridized cavity modes in comparison with pure air modes
and dielectric modes. The pure air modes are the same as in Fig. 2.11. The
pure dielectric modes are calculated with λq = 4ndld/(2q−1).[49] A hybridized mode
becomes air-like when it intersects with a pure air mode and becomes dielectric-like
when it intersects with a pure dielectric mode.

In a hybrid cavity, there are three reflective surfaces: the mirror, the fiber end
facet and the interface between the dielectric material and the air gap. Thus, two
cavities are formed. We call the one that arises in the air gap an air-cavity and
the other one that arises in the dielectric material a dielectric-cavity. The mode
hybridization arises from the coupling between these two cavities. If the air-cavity
has a higher finesse, then the hybrid cavity features a higher transmission for the
air-like modes, which is the case in Fig. 2.13a. The same accounts for the case of a
dielectric-cavity, which is shown in Fig. 2.13b.

To show the difference between air-like and dielectric-like modes, we simulate the
electric field intensity distribution of those two modes. Fig. 2.13c shows the air-like
mode highlighted by a blue circle in Fig. 2.13b and Fig. 2.13d shows the dielectric-
like mode highlighted by a red circle in Fig. 2.13b. As indicated by the names, the
energy of an air-like mode is mostly distributed within the air-cavity and the energy
of a dielectric-like mode is mostly within the dielectric-cavity. For the dielectric-
like case, shown in Fig. 2.13d, the electric field intensity is not higher within the
dielectric-cavity, but the energy density, which is proportional to n2|E|2, is higher
than that within the air-cavity. In addition, at the interface between air gap and
the dielectric material, the air-like mode exhibits a node while the dielectric-like
mode shows an anti-node.
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Figure 2.13: Simulated mode dispersion. The transmission of air-like and
dielectric-like modes are compared for the crystal lying on the LR mirror and the
HR mirror. a: Mode dispersion of a hybrid cavity with the crystal lying on the LR
mirror. In this case, the air-like modes have higher transmission. b: Mode disper-
sion of a hybrid cavity with the crystal lying on the HR mirror. In this case, the
dielectric-like modes have higher transmission. The pure air modes, orange lines,
and pure dielectric modes, green lines, are reconstructed by connecting air-like and
dielectric-like modes, respectively. As examples, the electric field distribution of
the air-like mode highlighted by the blue circle and the dielectric-like mode high-
lighted by the red circle are shown in c and d, respectively. c: Simulated electric
field distribution of an air-like mode. The light propagates from right to left. d:
Simulated electric field distribution of an dielectric-like mode. The light propagates
from right to left.
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2.2.7 Characteristics of the Cavity
There are several parameters required to fully characterize a cavity. Depending on
the applications, some are more important than the others.

As defined in Eq. (2.30), the finesse describes the sharpness of the resonance peaks,
which represents the spectral confinement of the cavity. When the cavity resonance
is tuned precisely to the emission line of the emitters in the cavity, the emission
will be significantly enhanced. This is called Purcell enhancement, which will be
discussed in detail in Sec. 2.3. Using the resonance linewidth in Eq. (2.28), the
cavity photon lifetime can be calculated as

τ =
1

2πδν
=

F
2π∆ν

, (2.43)

then the average number of round trips before a photon leaves the cavity is

N = τ∆ν =
F
2π
. (2.44)

This shows, that from another perspective, the finesse indicates how long a cavity
can trap the photons.

The quality factor, or Q-factor, describes how underdamped a resonator is. It is
the ratio between the resonance frequency and the resonance linewidth:

Q =
ν

δν
= qF . (2.45)

Similar to finesse, quality factor also describes the sharpness of the resonance peaks,
but relative to the frequency.

The mode volume is the volume that a cavity mode occupies. In general, it is
defined as

Vm ≡ 1

E2
0

˚

V

|E(r)|2dV, (2.46)

where E(r) is the electric field amplitude at location r and E0 is the maximum
electric field amplitude. For a fundamental Gaussian mode, the mode volume is
given by

Vm =
πw2

0l

4
. (2.47)

The mode volume describes the spatial confinement of the cavity.

In application, it is always the combination of spectral and spatial confinement
that determines the performance of the cavity. Table 2.2 lists some figures of merit
(FOM) for different applications.[53]
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Application Regime FOM

Purcell effect Bad cavity Q/Vm
Bad emitter 1/Vm

Strong coupling with
two level emitter

Bad cavity Q/
√
Vm

Bad emitter 1/
√
Vm

Table 2.2: Figures of merit for different applications with cavity. Bad cavity
means the cavity has a broader linewidth while bad emitter means the emitter has
a broader linewidth.

2.2.8 Fiber-based microcavity
To increase the spatial confinement of the photons, a fiber-based microcavity com-
posed of a single mode fiber and a planar mirror was designed.[26] According to
Eq. (2.15), in order to form a stable cavity in this configuration, the cavity length
has to be smaller than the radius of curvature of the fiber end facet. To increase
the finesse, a reflective coating is used on both the mirror and the fiber end facet.
In Ref. [26], the finesse reaches 57,000.

2.3 Purcell Enhancement
To describe the confinement implemented by the cavity, a theoretical model is
needed. In a quantum picture of light-matter interaction, the atomic states are
strongly coupled with the photonic states. This coupling is significantly enhanced
when some specific conditions are fulfilled. This is called Purcell enhancement,
or the Purcell effect.[54] Purcell enhancement is observed as a higher spontaneous
emission rate.

2.3.1 Models for Light-matter Interaction
To differentiate the quantum model from the classical model and the semi-classical
model, we will first introduce the other two models briefly.

The classical model is based on classical mechanics and electrodynamics, where
the matter is treated as an ensemble of charged particles governed by Newton’s
equations and the light is treated as an electromagnetic field governed by Maxwell’s
equations. With the classical model, linear and nonlinear optical phenomena can
be explained.

In the semi-classical model, the atomic system is quantized, while the light is still
treated as a classical electromagnetic field, which acts as a time-dependent Hamilto-
nian. The evolution of the atomic system can be derived using the time-dependent
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Schrödinger equation (TDSE). With the semi-classical model, Rabi oscillations can
be explained, but not spontaneous emission.

In the quantum model, the electromagnetic field is also quantized. Rather than
the field, the concept of photonic states is adopted. The states of the system are
described by a combination of atomic and photonics states. An atomic excitation
can be converted into a photon and vice versa.

2.3.2 Quantization of the Electromagnetic Field
Considering an 1D-optical cavity with length l in the z-direction, the electric field
and magnetic field are polarized in x- and y-directions, respectively. A general
solution to the Maxwell’s equations can be written as

Ex(z, t) =
∑
j

Ajqj(t) sin (kjz) ,

Hy(z, t) =
∑
j

Aj

(
q̇j(t)ε0
kj

)
cos (kjz) ,

(2.48)

where qj(t) is the normal mode amplitude with units of length, kj = jπ/l and

Aj =

√
2ω2

jmj

Vmε0
, (2.49)

with ωj = jπc/l as the eigenfrequency of the cavity and Vm as the mode volume,
which is defined in Eq. (2.47). mj is a constant with units of mass.

The classical Hamiltonian of such a dynamic system is then

H =
1

2

ˆ
V

dτ
(
ε0E

2
x + µ0H

2
y

)
=

1

2

∑
j

(
mjω

2
j q

2
j +mj q̇

2
j

)
=

1

2

∑
j

(
mjω

2
j q

2
j +

p2j
mj

)
,

(2.50)

where pj = mj q̇j is the canonical momentum. The Hamiltonian has the same
expression as a harmonic oscillator.

By quantization, qj and pj become operators q̂j and q̂j, for which the following
commutation relations apply:

[q̂i, p̂j] = iℏδij, (2.51)
[q̂i, q̂j] = [p̂i, p̂j] = 0. (2.52)
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Through a canonical transformation, the annihilation and the creation operators
can be derived as follows:

âj =
1√

2mjℏωj

(mjωj q̂j + ip̂j) , (2.53)

â†j =
1√

2mjℏωj

(mjωj q̂j − ip̂j) , (2.54)

together with the commutation relations

[âi, â
†
j] = iℏδij, (2.55)

[âi, âj] = [â†i , â
†
j] = 0. (2.56)

The Hamiltonian becomes

Ĥ = ℏ
∑
j

ωj

(
â†i âj +

1

2

)
. (2.57)

The quantized electric field operator is

Êx(z) =
∑
j

E0,j

(
âj + â†j

)
sin (kjz) , (2.58)

with

E0,j =

√
ℏωj

Vmε0
. (2.59)

In the case of free space, Eq. (2.58) becomes

Ê(r) =
∑
k

E0,k

(
âke

ik·r + â†ke
−ik·r

)
, (2.60)

with

E0,k = ek

√
ℏωk

2Vmε0
, (2.61)

where ek is the unit polarization vector.

For a specific mode, the eigenstates of the Hamiltonian are called Fock states |n⟩,
and has the following properties:

Ĥ |n⟩ =En |n⟩ = ℏω
(
n+

1

2

)
, (2.62)

â†i |n⟩ =
√
n+ 1 |n+ 1⟩ , (2.63)

âi |n⟩ =
√
n |n− 1⟩ , (2.64)

|n⟩ =

(
â†i

)n
√
n!

|0⟩ . (2.65)

These states are also called number states, because n is the number of photons.
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2.3.3 Spontaneous Emission in a Fully QuantumModel
Spontaneous emission arises from the coupling between an atomic system and vac-
uum fluctuations. In order to describe such a phenomenon, a quantized field is
required a fully quantized Hamiltonian can be written as

Ĥ = ĤA + ĤF + ĤI, (2.66)

with the three components representing the atomic system, the electromagnetic
field and the interaction between them, respectively.

For a two-level atomic system, the atomic states are denoted as |g⟩ and |e⟩ for
ground state and excited state, respectively. In general, a photonic state can be
written as

|ψph⟩ =
⊗∏
k

|nk⟩ , (2.67)

where k denotes a mode in free space. The photonic ground state can be written
as

|0, · · · , 0k, · · · , 0⟩ ≡ |0⟩ , (2.68)

where each mode is in the ground state. The single-excitation of the photonic state
in mode k can be written as

|0, · · · , 1k, · · · , 0⟩ ≡ |k⟩ , (2.69)

where only the mode k is excited and all other modes are in the ground state.
Spontaneous emission corresponds to the transition from |e, 0⟩ to |g,k⟩. In the
case of a weak perturbation, the spontaneous emission rate can be calculated with
Fermi’s golden rule:

Γ =
2π

ℏ2
∑
k

∣∣∣⟨g,k| ĤI |e, 0⟩
∣∣∣2δ (ω0 − ωk) , (2.70)

where ω0 is the resonance frequency of the atomic system. The dipole interaction
between the electric field and the atomic system is given by

ĤI = −eÊ · r̂. (2.71)

The transition matrix element can then be simplified as follows:∣∣∣⟨g,k| ĤI |e, 0⟩
∣∣∣2 =∣∣∣−e ⟨g,k| Ê · r̂ |e, 0⟩

∣∣∣2
=
∣∣∣µeg · E0,k ⟨k| âkeik·r + â†ke

−ik·r |0⟩
∣∣∣2

=|µeg · E0,k|2,

(2.72)
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where µeg ≡ −e ⟨g| r̂ |e⟩ is the dipole moment of the atomic system. In the second
step, we use Eq. (2.60) to substitute Ê. Then the spontaneous emission rate in
Eq. (2.70) becomes

Γ =
2π

ℏ2
1

3
µ2
eg

ℏω0

2Vmε0
ρ (ω0) =

πω0

3ℏVmε0
µ2
egρ (ω0) . (2.73)

The factor of 1/3 arises from the different dipole orientations and ρ (ω0) is the
density of states of photons in a mode volume of Vm, which is

ρ (ω0) =
Vmn

3ω2
0

π2c3
(2.74)

for free space. We therefore arrive at the spontaneous emission rate in free space

Γ0 =
µ2
egn

3ω3
0

3πε0ℏc3
. (2.75)

2.3.4 Cavity Enhancement and Purcell Factor
In an optical cavity, we consider the spontaneous emission coupled into a specific
cavity mode with resonance frequency ω0 and field strength

E0,c = ec

√
ℏω0

2Vmε0
u(r), (2.76)

where u(r) describes the mode profile. Eq. (2.70) becomes

Γ =
2π

ℏ2
∣∣∣⟨g, c| ĤI |e, 0⟩

∣∣∣2ρc(ω0)

=
2π

ℏ2
|µeg · E0,c|2ρc(ω0).

(2.77)

Here c stands for a specific cavity mode and the density of states follows the
Lorentzian line shape:

ρc(ω) =
1

π

δω/2

(δω/2)2 + (ω − ω0)
2 (2.78)

and
ρc(ω0) =

2

πδω
=

2Qc

πω0

, (2.79)

where Qc is the quality factor of the cavity resonance. The maximum spontaneous
emission rate into a cavity mode is then

γc,max =
2π

ℏ2
µ2
eg

ℏω0

2Vmε0

2Q

πω0

=
2µ2

egQc

ℏε0Vm
. (2.80)
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The Purcell factor can then be defined as

C ≡ γc,max

γ0
=

6πc3

n3ω3
0

Qc

Vm
=

3

4π2

(
λ

n

)3
Qc

Vm
, (2.81)

where λ is the wavelength of the light in vacuum. Such an enhancement of the
spontaneous emission rate is called the Purcell effect.

So far we have assumed that the atomic transition has an infinitely narrow linewidth,
which is valid when the cavity resonance is much broader than the atomic transition,
also called bad cavity regime in Tab. 2.2.

If the atomic transition has a finite linewidth, then the density of states becomes
the integral of the emission line multiplied by the cavity line:

ρ (ω0) =

ˆ ∞

−∞
ρc (ω − ω0)S (ω) dω, (2.82)

where S(ω) is the emission line of the atomic system. If the cavity line is symmetric,
then this simplifies to the convolution of the cavity line and the emission line.
Assuming that the emission line is also Lorentzian, with a quality factor Qem, then
the Q-factor of the convoluted line becomes:

Qeff =
1

Q−1
c +Q−1

em

, (2.83)

so the Purcell factor is

C =
3

4π2

(
λ

n

)3
Qeff

Vm
. (2.84)

If Qem ≪ Qc, then Qeff ≈ Qem, so the Purcell effect is mostly affected by the mode
volume Vm. This regime is called bad emitter regime in table 2.2.
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Chapter 3

Experimental Setup

In this chapter, we introduce our microcavity in detail and show how different
measurements can be carried out in the cavity. Following this, we describe our
crystallization method to integrate the molecular complexes to the microcavity.

3.1 Fiber-based Fabry-Pérot Scanning Mi-
crocavity

To make use of the cavity enhancement of an ensemble sample, we utilize a mi-
crocavity composed of a planar mirror1 and a laser-machined single mode fiber2

with a concave profile. The crystalline sample is grown on the mirror. Both the
mirror and the fiber end facet are coated with dielectric materials to increase the
reflectivity, and thus the finesse.

3.1.1 Fabrication of Cavity Fibers
A microcavity can be fabricated with low surface roughness, either by etching[25] or
by laser-machining[22]. The etching method can fabricate structures in the range of
100 µm. However, with laser-machining, the scale of the profile can achieve features
on the order of 10 µm.

We use a pulsed CO2-laser3 with a peak power >10 W and a tunable duty cycle.
The high intensity of the laser will evaporate the material at the shot area. The heat
conduction can be controlled by the duty cycle. Using an acousto-optic modulator
(AOM), the pulse sequence can be freely designed with MHz bandwidth.

1Ø12.7 mm × 3.0 mm, out of SiO2
2Artphotonics SM530-125-160AL
3Synrad firestar v40, λCO2

= 10.6 µm
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Figure 3.1: Characterization of the fiber in the WLI. a: The interference
pattern captured by the camera. b: Reconstruction of the fiber end facet from the
interference pattern. Only the center part is reconstructed. The fiber was shot by
5 pulses with a duration of 22 µs and 40 ms pause in between. The ROC in x−
and y-direction are 50.9 µm and 34.3 µm, respectively, given by a 2D Gaussian fit.

In order to characterize the fiber, a white light interferometer (WLI) is used. A light-
emitting diode (LED) centered at 463.25 nm is used to illuminate the fiber and the
interference pattern is captured by a camera, from which the phase information can
be reconstructed into height profiles. The interference pattern and reconstructed
profile of one of the fibers used in this study are shown in Fig. 3.1. From the
reconstruction data, the radius of curvature (ROC) and the depth of the profile can
be determined. According to Eq. (2.15), the ROC determines the stability range of
the cavity.

3.1.2 Reflective Coating

The reflective coating is achieved by distributed Bragg reflectors (DBRs), applying
on both the mirror and the fiber end facet. DBRs consist of a sequence of thin
dielectric layers with alternating materials, arranged in such a way that the reflected
wave from each interface will all interfere constructively. The reflectivity R of a
DBR consist of two alternating materials with refractive indices nH > nL can be
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Figure 3.2: Reflectivity of a DBR as a function of the number of stacks.

approximated as[55]:

R =

(
n0n

N
L − nSn

N
H

n0nN
L + nSnN

H

)2

, (3.1)

where n0 is the refractive index of the medium in the cavity, nS is the refractive
index of the mirror substrate, and N is the number of stacks. We use Ta2O5

(n = 2.1324) and SiO2 (n = 1.4829) as the coating materials. Taking n0 = 1 and
nS = nSiO2 = 1.48, we plot the reflectivity R in Eq. (3.1) with respect to N , as
shown in Fig. 3.2.

A DBR coating is only designed for a specific wavelength, since different wavelengths
will have different phases in the coating layers, thus the constructive interference
is not guaranteed. Therefore each individual DBR coating can be simulated for
different center wavelengths.

Using the matrix method described in Ref. [52], we simulate the transmittance
for different multi-layer coating sequences, as shown in Fig. 3.3. The Sellmeier
formula[56] is used to model the medium dispersion. The coating consists of al-
ternating Ta2O5 and SiO2 layers, starting with Ta2O5 from the mirror substrate.
As shown in Fig. 3.3, DBRs feature a band of very low transmittance centered at
the design wavelength, which is called stop band. The more layers, the lower the
transmittance within the stop band and the steeper the edge of the stop band.

In this thesis, we use a single mode fiber coated4 with 31 layers, resulting in a
transmittance of 25 parts per million (ppm), and a planar mirror coated with 28
layers, resulting in a transmittance of 200 ppm, with a design wavelength of 585

4The coating is done by Laseroptik GmbH
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Figure 3.3: Transmittance through DBRs with different coating layers.
The design wavelength is 585 nm. The transmittance is shown in ppm.

nm. According to Eq. (2.30), the design finesse is around 28,000.

3.1.3 Assembly of the Microcavity
The mechanical setup of the microcavity is shown from two different angles in
Fig. 3.4 and 3.5. The design was introduced by Thomas Hümmer in his PhD thesis
[57]. The particular setup used in this thesis was built by Evgenij Vasilenko.

The cavity fiber is fed through and glued5 into a syringe needle6 (2), which is
then mounted into a cantilever (1). The longitudinal movement is controlled by a
coarse7 (6) and a fine8 z-piezo (5), pressing on the cantilever. The lateral movement
is controlled by a x-piezo9 (3) pressing on the needle, and a y-piezo10 (4) pressing
on the cantilever. Rather than directly translating the fiber, the three piezos tilt
the cantilever. Therefore, it is important to adjust the screws (9, 10, 11), such
that the fiber is perpendicular to the mirror when the piezos are not charged. At
room temperature, the cavity has a longitudinal scanning range of 30 µm and a
lateral scanning range of 70 µm. Due to the different mechanical structures for x-
and y-movement, the scanning range in the x-direction is larger than that in the

5Uhu plus schnellfest.
6Sterican Blunt, 27 G × 1", Ø0.40×25 mm.
7Piezomechanik PSt 150/5×5/20
8Thorlabs, PA4FEW
9Piezomechanik PSt 150/2×3/20

10Piezomechanik PSt 150/3.5×3.5/20
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Figure 3.4: Mechanical structure of the fiber positioning setup. The labeled
parts are explained as follows: 1○: The cantilever, which looks like an inverted “T”
in the figure. 2○: The syringe needle mounted at the end of the cantilever, with
the fiber glued inside. 3○: x-piezo, pressing onto the needle. 4○: y-piezo, pressing
onto the end of the cantilever, which will twist the cantilever and thus move the
fiber in y-direction. 5○ and 6○: Coarse and fine z-piezos, pressing onto the end
of the cantilever. 7○: Mounting screws for the needle. 8○: The rotation axis of
the cantilever. 9○, 10○ and 11○: The adjusting screws for the x-, y- and z-piezos,
respectively. The coin is used for scale.

y-direction.

The mirror is mounted on a translation stage driven by two motors. The travel
range is sufficient to reach the central 5 mm region of the mirror. More details
about the operation of the cavity will be discussed in Sec. 3.2.

A picture taken by a microscope11 reveals more details about the microcavity, as
shown in Fig. 3.6.

11Reflecta DigiMicroscope USB 200
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Figure 3.5: Mechanical structure of the mirror translation stage. The
labeled parts are explained as follows: 12○: The gear to move the mirror in x-
direction. 13○: The gear to move the mirror in y-direction. 14○: Mounting screws
for the mirror. 15○: Mirror holder which can be moved in x- and y-direction. The
coin is used for scale.

3.1.4 Optical Setup
The sketch of the optical setup is shown in Fig. 3.7. The laser is coupled into the
cavity via the cavity fiber, which enables an easy exchange of the light sources. A
diode laser12 with center wavelength of 532 nm and tunable power up to 100 mW is
used for off-resonant excitation, which drives the 7F0 → 5D1, followed by phonon-
assisted relaxation to 5D0 and further via photon emission. A dye laser13 with tun-
able wavelength around 580 nm is used for resonant excitation, which directly drive
the 7F0 → 5D0 transition. Therefore, the DBR coating is designed for this wave-
length. A pulsed broadband laser14 is used to measure the wavelength-dependent
transmittance and mode dispersion. With a multi-channel tunable filter15 based on
acousto-optic tunable filter technology (AOTF), the broadband laser can be filtered
to a single wavelength output with a bandwidth of about 2 nm.

12Cobolt Samba 100
13Sirah Matisse 2 DX
14SuperK fianium FIR-20
15SuperK select
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Figure 3.6: A zoomed in picture of the microcavity taken by a microscope.
The geometry between the fiber and the mirror is shown.

The transmission of the cavity is collimated after the mirror and can then be either
focused via free-space onto a photoiode16 (PD) or an avalanche photodiode17 (APD),
or fiber-coupled to a spectrometer18 or a single-photon counter19.

3.1.5 Active Stabilization
In order to perform fluorescence spectroscopy in the cavity, an active stabilization
scheme based on proportional-integral-derivative (PID) controllers is used[29]. A
fast PID controller locks the cavity transmission to a flank of the resonance peak
by outputting a control signal onto the fine z-piezo. Another slow PID controller
locks the output of the fast PID controller to zero. By using a dichroic mirror20,
while the excitation laser at 532 nm is measured by the PD to lock the cavity, the
fluorescence can be further sent to another detector or the spectrometer.

For quick measurements in the range of 10 s, a manual stabilization is more con-
venient. By manually tuning the voltage of the fine z-piezo, the cavity can be
stabilized at the resonance peak.

16Thorlabs, PDA36A-EC
17Thorlabs, APD130A2/M
18Andor, SR-500i-D2-R-SIL
19Laser Components, Count-50C
20Semrock, FF552-Di02-25x36
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Figure 3.7: Optical setup for the cavity measurement.

3.2 Measurement Scheme
In such a scanning microcavity, a variety of measurements can be carried out.
Examples are transmission, finesse, fluorescence and mode dispersion.

3.2.1 Cavity Resonance Spectrum
The cavity resonance spectrum can be measured by sweeping the coarse z-piezo
voltage and recording the transmission signal via the PD or the APD. An example
of cavity resonance measured on a clean part of the mirror is shown in Fig. 3.8. The
higher peaks are the fundamental modes while the lower peaks are the higher-order
modes. Assuming a linear response of the piezo, the distance between two adjacent
fundamental modes is one FSR. The higher-order modes can be suppressed or even
eliminated by adjusting the tilt of the fiber with respect to the mirror. By fitting
the resonance peaks to Lorentzian lines, the finesse can be calculated. For example,
in Fig. 3.8, the finesse is about 6000.

3.2.2 Cavity Scan
To determine the topology of the sample, a transversal cavity scan is carried out. In
this case, the cavity works as a scanning cavity microscope. A number of different
measurement schemes can be utilized while scanning the fiber across the mirror with
x- and y-piezos, among which, the most straight forward measurement scheme is
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Figure 3.8: Cavity resonance spectrum on a clean part of the mirror. The
piezo voltage is swept with a triangular waveform, and the actual change in cavity
length depends on the piezoelectric coefficient and the linearity of the piezo.

Figure 3.9: Cavity transmission maps measured with 532 nm laser. a:
The average cavity transmission is taken for each point. b: The maximum cavity
transmission is taken for each point.

the cavity transmission.

At each point of the transversal scan, a cavity resonance spectrum is measured
and stored. To plot a cavity transmission map, either the maximum or average
transmission of each point can be taken. Examples of both data evaluation meth-
ods based on the same cavity scan measurement are shown in Fig. 3.9, where the
crystal in Fig. 3.12a is investigated. From the comparison, the average cavity trans-
mission shows a higher contrast and signal to noise ratio. Therefore, all other cavity
transmission maps will be shown as the average transmission.

In addition to cavity transmission map, the scanning cavity microscope can also
be used to measure finesse maps, fluorescence maps, extinction spectroscopy and
Raman spectroscopy.[27]
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3.2.3 Cavity Mode Dispersion
The cavity mode dispersion is important for choosing a good cavity mode and cavity
length for spectroscopic measurements. In addition, it determines the thickness, the
refractive index and the birefringence of the crystal.

To measure the cavity mode dispersion, the broadband laser is coupled into the
cavity and the transmission is coupled to the spectrometer and the spectra are
recorded for each cavity length controlled by the coarse z-piezo. The transverse
position of the fiber is fixed over the crystal.

In addition to the broadband laser, the fluorescence from the sample in the cavity
can also be used to measure the mode dispersion. In this case, it is called the emis-
sion dispersion. With broadband emission (∼ 100 nm), the emission dispersion
of color centers in diamond can be easily measured.[58]. However, in the case of
europium-embedded molecular complexes, the emission consists of several isolated
lines, with corresponding linewidths of less than 1 nm, as shown in Fig. 3.14. There-
fore the emission dispersion can not reveal the cavity mode dispersion throughout
the entire spectral range, but it can still reveal how much emission is coupled into
the cavity modes.

3.3 Sample Preparation
To achieve cavity enhancement, we integrate the Eu3+-embedded molecular com-
plexes into the microcavity via crystallization from a solution. The optical and
spectroscopic properties of the crystals are characterized after the process.

3.3.1 Molecular Structure
The material we use is a molecular mononuclear Eu3+ complex [Eu(BA)4(pip)],
where BA and pip stands for benzoylacetonate and piperidin-1-ium, respectively [59].
The structure of the molecule is shown in Fig. 3.10. This molecule has been recently
shown to posses an ultra-narrow homogeneous linewidth of 4.6 kHz and long optical
coherence time of 68 µs[17], after diluted to 5%. The refractive index of such molecule
in crystalline form is assumed to be 1.5[17], but there is no measurement so far.

By engineering the molecular structures, the transition amplitudes and the inter-
action between qubits can be modified, as discussed in Sec. 2.1.3.

3.3.2 Crystallization on Cavity Mirror
The molecular complex is typically synthesized in the form of powders. For recrys-
tallization, we dissolve 100 mg of the powder into 5 ml ethanol to form a saturated
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Figure 3.10: Structure of the molecular mononuclear Eu3+ complex. Grey,
carbon; white, hydrogen; pink, europium; red, oxygen. The figure is taken from
Ref. [17]

Figure 3.11: Crystal growth on a cavity mirror. a: The cavity mirror is hung
half way into the solution. The bottle is sealed but left with holes on top. b: The
cavity mirror after recrystallization process.

solution at room temperature. Then the cavity mirror is hung half way into the
solution, an example is shown in Fig. 3.11a. The entire mirror is then coated by
a thin layer of solution due to capillarity effect. The bottle is then sealed21 with
some ventilation holes on top to achieve a slow evaporation rate and protect foreign
objects from falling in, reducing the chance of contamination. The solution takes
roughly a week to vaporize, depending on the ambient temperature and humidity.
After the solution level declines due to evaporation, leaving the entire mirror in the
air, the crystallization process is completed. Good crystallization is achieved when
a clean mirror with homogeneous distribution of crystals is obtained, as shown in
Fig. 3.11b.

3.3.3 Characterization of the Crystals
After crystallization, the mirror is first put into a microscope to obtain information
on the topology and location of the crystals. Some examples of the crystals are

21Parafilm M sealing film
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Figure 3.12: Crystals under a microscope. a: Small and thin crystal, with
thickness around 2 µm and RMS surface roughness around 0.4 nm, which is ideal for
cavity integration. b: Crystals with larger sizes. RMS surface roughnesses, about
0.7 nm, are good enough and very easy to localize in the cavity. The thickness is
about 8 µm. c: Overgrown large crystal, which is not suitable for cavity due to
bad surface roughness and large height. d: Crystals overlapping each other. Also
not suitable for cavity integration because the crystal on top is tilted and the air
gap between crystals has undesired effects on the cavity.

shown in Fig. 3.12.

The surface roughness of the crystals is then measured with the WLI. In addition,
the height profile is obtained by reconstruction, from which the surface roughness
can be determined. As an example, the interference pattern and the corresponding
reconstructed height of the crystal in Fig. 3.12a is shown in Fig. 3.13a and b, respec-
tively. To estimate the surface roughness, we calculate the RMS of the residuum
by fitting a plane to the height profile. The RMS over an area of 5 µm × 5 µm is
0.4 nm. According to Eq. (2.41), this surface roughness correspond to scattering
losses of 100 ppm. The geometry thickness of the crystal can also be measured
by comparing the motor positions while focusing on the top of the crystal and the
mirror. The thickness of the particular crystal shown in Fig. 3.13 is about 2 µm.

The fluorescence spectra are measured in a confocal setup with an off-resonant
excitation. The results are shown in Fig. 3.14, and all the corresponding transitions
are marked. The spectra are consistent to that in Ref. [17], which indicates that
the molecular complex maintain the optical properties after recrystallization such
as linewidths and resonance wavelengths.
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Figure 3.13: Interference pattern and profile reconstruction. a: Interference
pattern measured with WLI. b: Height profile of the crystal from reconstruction.
The profile is fitted to a plane and here the residuum is shown.

Figure 3.14: Fluorescence spectra of crystals from a confocal setup, with
excitation at 532 nm. The optical transitions discussed in Sec. 2.1.3 are labeled
in the spectra. a: Spectrum with low resolution: The spectrum features a strong
transition near 613 nm. b: Spectrum with high resolution: The sharp peak at 580
nm with a linewidth of 0.17 nm corresponds to 5D0 → 7F0 transition, which is also
used for resonant excitation. The measurement limit of the spectrometer is below
0.07 nm.
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Chapter 4

Results and Discussion

In this chapter, we demonstrate the cavity operation with integrated molecular
crystals. A number of measurement results are shown and discussed.

4.1 Cavity Performance
Before doing spectroscopy, we first characterize the performance of the cavity, in
order to estimate the thickness of the crystals and the losses introduced by the
crystals. Most importantly, we search for an ideal location for spectroscopy mea-
surements.

4.1.1 Scanning CavityMicroscopy ofMolecular Crys-
tals

Before the measurement on a particular crystal, the cavity is first aligned and then
characterized at a clean part of the mirror, after which, a finesse of about 10,000
is measured. The actual finesse is lower than the design value of 28,000 because
of additional loss channels like absorption or scattering losses introduced by e.g.
solution residues.

With the help of the two motors the cavity mirror can be precisely driven to any
crystal position. This can be confirmed by comparing the shape of the crystal in the
cavity scan to that in the WLI. An image from a microscope1 is shown in Fig. 4.1.

We first scan the cavity with the 532 nm excitation due to the high transmission
which arises from this wavelength being located at the edge of the stop band. The
cavity transmission map is shown in Fig. 4.2a, where the topology of the crystal can

1Reflecta DigiMicroscope USB 200
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Figure 4.1: Image of a crystal in the cavity. The lower part is the single-mode
fiber with a laser-machined end facet and the upper part is the mirror image of it.
The diameter of the fiber is about 125 µm.

Figure 4.2: Scanning cavity microscopy on a crystal. All the three measure-
ments have the same scan range of about 70 µm × 70 µm. a: Transmission map
measured with 532 nm excitation. b: Transmission map measured with 580 nm
excitation. c: Finesse map measured with 580 nm excitation. This scan has a
lower resolution than the other two.

be seen. The stripe-like structures indicate an alternating air-like and dielectric-like
modes due to the change of the crystal height at the surface.[28] To determine which
mode has a higher transmission, we investigate the mode dispersion in more details
in the next section.

Then, the transmission map with 580 nm excitation is measured, as shown in
Fig. 4.2b. By comparison, it is evident that forming a cavity with 532 nm excitation
is simpler than with 580 nm excitation, but results in a lower contrast.

To measure the finesse map with 580 nm excitation, two measurements are taken
at each pixel in the cavity scan and the average value is plotted in Fig. 4.2c. If
no cavity is formed, the finesse will be treated as zero. The consistency between
the finesse map and the transmission map allows us to use the transmission as an
indication of the finesse. On a thin and smooth crystal, a finesse of up to 4,000 can
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Figure 4.3: Multi-channel scanning cavity microscopy. Outputs at 532 nm,
613 nm and 580 nm from the AOTF are used.

be measured with 580 nm excitation.

Using the output from the AOTF, we can perform scanning cavity microscopy with
any excitation wavelength. As shown in Fig. 4.3, three cavity scans with 532 nm,
613 nm and 580 nm excitation are measured separately and merged together. With
the multi-channel scan, the cavity performance with different wavelengths can be
compared. In the lower-right part of the scan, all three wavelengths show high
transmission, which indicates an ideal location for fluorescence spectroscopy.

4.1.2 Mode Dispersion of a Hybrid Cavity
Using the method described in Sec. 3.2.3, the cavity mode dispersion is measured
with the broadband laser, as shown in Fig. 4.4a and b. In general, the fundamental
modes are dominant, but the higher-order modes become visible occasionally as
the alignment of the cavity fiber varies for different wavelengths and cavity lengths.
The anti-crossing behavior, shown in Fig. 2.12, is also observed. By connecting
those points which are air-like, the pure air modes can be reconstructed. From
Fig. 2.12b, the vertical distance between two reconstructed pure air modes is about
12.5 nm, which corresponds to an air gap of 13 µm according to Eq. (2.21).

From the mode dispersion measurement, we find out that air-like and dielectric-
like modes have different transmissions. The dielectric-like modes, with shallower
slopes, show higher transmission than the air-like modes.

The dielectric-like modes having higher transmission indicates that the dielectric-
cavity has a higher finesse. One factor is that the crystal grown on top of the mirror
coating will change the transmittance. According to our simulation of the hybrid
cavity, the transmittance reduces from 200 ppm to 150 ppm, which will increase
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Figure 4.4: Mode dispersion of a hybrid cavity. A higher piezo voltage means
a shorter cavity length. First, the transmission at each wavelength is calibrated
with respect to the average of all cavity lengths. Then for each cavity length, the
spectrum is normalized to the maximum. a: A measurement with a piezo voltage
range of 40 V, corresponding to a cavity length change of about 2 µm. b: A
zoomed in region of a. Alternating air-like and dielectric-like modes can be seen
more clearly here. An air-like mode has a steeper slope and a lower transmission.
The orange lines show the reconstructed pure air modes by connecting the points
which are air-like, with steeper slope and lower transmission.

the finesse of the dielectric-cavity. The concave profile on the fiber end facet could
also contribute to a lower finesse of the air-cavity. The mode hybridization could
be different from case to case. In a recent research [28] dealing with diamond
membranes in such a microcavity, the air-like modes have higher transmission due
to losses at the diamond membrane.

4.1.3 Emission Dispersion
Similar to the mode dispersion, the same scheme can be used to measure the emis-
sion dispersion. In this case, the 532 nm laser is coupled into the cavity. The result-
ing emission dispersion is shown in Fig. 4.5a. While sweeping the cavity length, the
emission can be observed when the cavity is resonant to the excitation. However,
the broadband emission will normally be coupled into several cavity modes, as seen
in the left part of Fig. 4.5a. When the cavity is well aligned and only one funda-
mental mode is resonant to the emission, the emission is significantly enhanced, as
seen in the right part of Fig. 4.5a. The integrated fluorescence intensity shown in
Fig. 4.5b demonstrates the dependency of the emission on the cavity length
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Figure 4.5: Emission dispersion near 613 nm. The excitation is at 532 nm.
a: Emission spectra at different piezo voltages. Only cavity lengths resonant to
the excitation can produce emission, which will be further coupled to several cavity
modes. When the emission is also resonant to a fundamental cavity mode, a sharp
and high emission line can be observed. b: Integrated fluorescence intensity from
605 nm to 625 nm.

4.2 Cavity Fluorescence Spectroscopy
Different from the fluorescence spectroscopy in free-space, the sample fluorescence
in the cavity cannot be fully coupled out. Only those which are resonant to the
cavity modes can be collected. Therefore the so-called double resonance condition
has to be fulfilled.

4.2.1 Double Resonance Condition
The emitted fluorescence is only measurable when the cavity is resonant to both
the excitation and fluorescence, which is in this particular case at about 1 V in
Fig. 4.5. We call this the double resonance condition.

To find the double resonance condition, 532 nm and 613 nm excitation light with
a bandwidth of 1 nm from the AOTF output are simultaneously coupled into the
cavity. The transmission of the two wavelengths are split by using a dichroic mirror
with cut-off wavelength of 552 nm and the corresponding signals can be detected

49



CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.6: Resonance spectrum of a two-color cavity. The double resonance
condition is fulfilled for the highlighted mode.

by the PD and the APD, respectively. The cavity resonance spectra for both
wavelengths are shown in Fig. 4.6.

4.2.2 Fluorescence Spectroscopy
To measure the fluorescence spectrum, the cavity is actively locked to the 532
nm transmission using the method described in Sec. 3.1.5. After a notch filter2,
the fluorescence is coupled to the spectrometer. The fluorescence spectra when
the cavity is locked at a series of adjacent longitudinal cavity modes with 532 nm
excitation are shown in Fig. 4.7. A significant enhancement is observed when the
double resonance condition is fulfilled, as shown by the green spectrum.

4.3 Measuring the Purcell Effect
In order to determine a Purcell factor, an off-resonant pulsed excitation scheme
was used to measure the lifetime in the cavity and then compared to the free-space
lifetime.

4.3.1 Estimation of the Purcell Factor
With the cavity mode dispersion and the finesse measurements on the crystal,
it becomes possible to estimate the Purcell factor. From Fig. 4.4, the FSR in
wavelength domain near 580 nm is about 6 nm, which indicates an optical cavity

2Semrock NF03-532E-25
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4.3. MEASURING THE PURCELL EFFECT

Figure 4.7: Fluorescence spectra of different longitudinal modes. The emis-
sion is significantly enhanced when the double resonance condition is fulfilled, as
shown by the green spectrum. The exposure time is 1 s.

length of 28 µm, according to Eq. (2.21). Then it follows that the mode order

q =
2l

λ
= 97. (4.1)

This cavity length is different from the air gap calculated before. Here the optical
thickness of the crystal is also included. By comparing the air gap and optical cavity
length, we can find the optical thickness of the crystal is 15 µm, corresponding to
a geometric thickness of 10 µm. This is close to the geometric thickness of 8 µm
measured in the WLI.

Since 580 nm and 613 nm are both within the stop band and are of similar wave-
lengths, the Q-factor with 580 nm excitation can be used to approximate the Q-
factor with 613 nm excitation. Taking the finesse with 580 nm excitation to be
4,000, then according to Eq. (2.45), the Q-factor of the cavity is

Qc = qF = 388, 000. (4.2)

From the fluorescence spectrum measured in the confocal setup (see Fig. 3.14), the
linewidth of the 5D0 → 7F2 emission at 613 nm is estimated to be 1.5 nm, and thus
the Q-factor of the emitter is

Qem =
λ

δλ
= 409. (4.3)

Since the Q-factor of the cavity is much higher than that of the emitter, the effective
Q-factor in Eq. (2.83) has a dominant contribution from the Q-factor of the emitter,
i.e. Qeff ≈ Qem = 409.
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The mode volume Vm can be calculated from the geometry of the cavity as follows.
The wavefront of the fundamental Gaussian mode should match the profile of the
fiber end facet. In Eq. (2.36), z is set as the cavity length 28 µm and R(z) be the
radius of curvature of the fiber end facet 40 µm, then the Rayleigh range z0 can be
calculated as

z0 = z

√
R(z)

z
− 1 = 18.3 µm. (4.4)

Then, according to Eq. (2.34) and (2.47), the mode volume Vm is

Vm =
λlz0
4

= 79 µm3. (4.5)

Finally, using Eq. (2.84), we obtain a Purcell factor of C = 0.09.

The estimated Purcell factor highly depends on the emission linewidth at 613 nm
and the cavity length. In addition, using the finesse at 580 nm will overestimate
the Q-factor at 613 nm because the DBR coating is designed to have the maximum
reflectivity at 585 nm, which is closer to 580 nm.

According to the estimated Purcell factor, the cavity provides an extra 9% emission
rate into the cavity mode, from which a lifetime shortening of 9% is expected.
However, the majority of the emission is still emitted into the free-space modes.

4.3.2 Pulsed Excitation
To achieve pulsed excitation, the simplest solution is to use a semicircular chopper
wheel, with an on-off modulation of the laser and a duty cycle of 50% at a fre-
quency up to 100 Hz. The transmission is coupled to the single-photon counter. To
characterize the chopper wheel, the total transmission, mostly the excitation laser,
is sent to the single-photon counter after a neutral density filter with a sufficient
optical density avoiding saturation of the detector. The transient of the chopper
wheel is shown in Fig. 4.8. At a rotation speed of about 40 Hz, the falling time is
about 50 µs.

4.3.3 Lifetime Shortening
With off-resonant pulsed excitation at 532 nm, the optical lifetime can be measured
by fiber-coupling the fluorescence from the cavity to the single-photon counter. To
compare the lifetimes in a confocal setup and in the cavity, identical pulse sequences
are sent to both setups with crystals grown using the same method. The lifetimes
measured in the cavity and the confocal setup are compared in Fig. 4.9.

As expected, the lifetime in the cavity highly depends on the location on the crystal
and the cavity length. According to the statistics, the lifetimes in the cavity average
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Figure 4.8: The transient signal of the chopper wheel. The inset shows the
zoom of the falling edge. In this case, the falling time is about 50 µs, which is
sufficient to measure an optical lifetime of 500 µs. The rotation speed is about 40
Hz.

526 ± 60 µs and those in the confocal setup average 532 ± 30 µs, compared to
540 µs measured in an ensemble at 1.45 K in Ref.[17]. The consistency of the
free-space lifetime proves that our recrystallization method preserves the optical
lifetime. The difference between cavity and free-space lifetime is within the statistic
error. Therefore, we cannot conclude whether there is Purcell enhancement or not.
However, since each data point is measured at a different location, it is reasonable
to look at individual data points from the cavity measurements, and a few of them
show a lifetime shortening of more than 10%.

53



CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.9: Comparison of the lifetimes in confocal setup and in cavity. a:
An example of lifetime measurement in cavity. The exponential fit gives a lifetime
of 531±6 µs. b: Data point distribution of the measurements in the cavity and
the confocal setup. The orange points on the left side show the lifetimes measured
in the cavity and the blue points on the right show the lifetimes measured in the
confocal setup. As a reference, the green dashed line shows the lifetime of 540 µs
measured in an ensemble at 1.45 K in Ref.[17]. The fitting errors of the confocal
measurements are all below 1 nm, which is too small to demonstrate in the figure.
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Chapter 5

Conclusion and Outlook

In this work, we integrate a newly synthesized Eu3+-embedded molecular complex
in the form of crystalline platelets into a microcavity and prove the cavity operation
at room temperature. This work paves the way to cavity-enhanced spectroscopy at
cryogenic temperatures of molecular complexes and to optically addressable qubits
distributed in a microcavity.

With the reproducible crystallization method, we achieve thin crystals with thick-
nesses as low as 2 µm. The surface roughness RMS over an area of 5 µm × 5 µm
is determined to be as low as 0.4 nm, which enables cavity operation with finesse
as high as 4,000. The density of the crystals can also be controlled such that it
is always possible to find a good crystal in the center of the mirror and that the
crystals are not stacked together resulting in additional effects.

We perform a number of different measurements to characterize the hybrid cavity,
including transmission maps, finesse maps, cavity mode dispersion and emission dis-
persion. In the next step, other measurements, like cavity extinction spectroscopy,
can be tried out.

For the majority of crystals, a cavity can be formed with 580 nm excitation, which
can be further used for resonant excitation. Based on the transmission and finesse
maps, we can find suitable locations for ensemble spectroscopy measurements in
the cavity.

Using a broadband laser, the cavity mode dispersion is measured, which shows the
coupling between an air-cavity and a dielectric-cavity. With the help of simulations,
the behavior of a hybrid cavity can be explained. The characteristics of the hybrid
cavity depend on which cavity is in resonance. Thus, the hybrid cavity periodically
change between an air-like cavity and a dielectric-like cavity. Those characteristics
include transmission, finesse and dispersion behavior.

According to the dispersion measurements, the mode volume is below 100 µm3,
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which still has further room to improve if the air gap is carefully monitored while
approaching the crystal.

Using the emission dispersion and multichromatic transmission maps, locations ful-
filling the double resonance condition are found. The cavity-enhanced fluorescence
is measured using an active stabilization scheme. In order to measure the optical
lifetime in the cavity and further to determine the Purcell factor, we use off-resonant
pulsed excitation. The estimated Purcell factor is 0.09, corresponding to a lifetime
shortening of 9%. Some measurements in the caivty show a reduction of around
10%, compared to free-space lifetime of 540 µs, but there is not yet a statistically
convincing conclusion as the lifetime difference lies within the error.

At room temperature, the emission from 5D0 → 7F2 transition is very broad, featur-
ing a linewidth of more than 1 nm, resulting in a bad-emitter regime. The Purcell
enhancement only comes from the spatial confinement. However, using resonant
excitation scheme at liquid He temperature or 4.2 K, the linewidth of 5D0 → 7F0

transition for an individual emitter is below 200 kHz[17]. Therefore, using resonant
excitation at cryogenic temperatures can benefit from an emitter linewidth which
is 7 orders of magnitude narrower, compared to off-resonant excitation at room
temperature. In addition, for the resonant excitation scheme, no double resonance
condition is required, and thus a high finesse can be achieved for both excitation
and emission.

Looking into the future of quantum computing. The molecular complexes can be
engineered to become bright emitters with excellent coherence properties. Mul-
tiple ions can be embedded into one molecule, resulting in multi-qubit coupling
with defined strength. The ability to form thin and smooth crystalline structures
makes the molecular complexes scalable. Such optically addressable qubits can be
distributed on a mirror, becoming a “quantum chip”. Furthermore, nanosturctures
can also be implemented onto the “chip”, creating connections between qubits in
large scale.
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